China Good quality D3650 High Quality Agricultural Belt Wrapped V-Belt for Harvesting Machine electric axle

Product Description

How to keep your  harvester running in top condition?
Maintain your machine timely, and keep enough stock of  harvester parts.

How to keep your  harvester running in top condition? Maintain your machine timely, and keep enough stock of  harvester parts.
Quality and cost-saving CZPT harvester parts have a profound impact on the way the farmer running their crops

We are an over 20 year experience agriculture parts manufacturer.TiHangZhou aims to manufacturer a wide selection of combine harvester parts. 
Since our market has huge users of  harvester, so we know very well what our clients need for the  harvester parts.

You can find the full scope of Kubota/Yanmar/World harvester parts .
We will be proud to be listed on your long-term harvester spare parts manufacturers or other  spares suppliers in the soon future

Product Description

Brand agrotianda
Package Wooden case / Carton / nude package/frame
Trademark customizable
HS 8433909000
Origin ZheJiang ,china
Production Capacity 15000 Tons / Year

                   
       DHangZhou TIHangZhou INTELIGENT TECHNOLOGY Co., Ltd. is a high tech company specializing in R&D, design, manufacture, sales and service of high-tech agricultural equipment. TIHangZhou’s products are widely used in farmland, orchard, forest plant protection, and other fields. 
TIHangZhou has professional product technology talents and experienced team, not only provide customers with quality products, first-class technology, but also provide with perfect and thoughtful service. TIHangZhou committed to be your ideal partner and will always be committed to your requirement. TIHangZhou has applied for a number of national patents, will build mature laboratories and production workshops. At present, the domestic business has expanded to ZheJiang , ZheJiang , ZheJiang , ZheJiang , HangZhouang, ZheJiang , Northeast China and other places in China, and has established close cooperative relations with customers in Indonesia, Malaysia, Thailand, Myanmar, Brazil, Peru, Ecuador, Columbia more than 30 countries.

Based on advanced scientific research technology and professional team, TIHangZhou Will closely follow the trend of the “Internet +” era in the country and will provide more comprehensive intelligent integrated services for domestic and foreign companies to create a new type of smart agriculture. It will make an important contribution to safeguarding agricultural security and increasing people′s income. 

FAQ

1. What’s the MOQ? 

A:Each partnumnber at least 20 pcs.

2.Which brand do you produce?
A:We can produce spare parts of World /Yanmar/Kubota/Mubota harvester.

3. How to order parts?
A:Send me partnumber and qty , I will according qty give you best price.

4.What’s your Payment terms?
A:30% payment in advance by TT, 70% balance before delivery.

Q5:How long is your delivery time?
A:World/Yanmar/Kubota parts 7-15 days,Mubota parts 20-30 days.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Spare Parts
Usage: Harvester
Material: Material
Power Source: No
Weight: 1lbs
After-sales Service: Free Spare Parts
Customization:
Available

|

Customized Request

v belt

What are the cost considerations associated with using V-belts in power transmission?

When considering the use of V-belts in power transmission applications, several cost factors should be taken into account. Here are the key cost considerations associated with using V-belts:

  1. Initial Cost:
  2. The initial cost of V-belts includes the purchase price of the belts themselves. V-belts are generally cost-effective compared to other power transmission options such as gears or chains. However, the specific cost can vary depending on factors such as belt type, size, and brand.

  3. Installation Cost:
  4. The installation cost involves the labor and time required to install the V-belts in the power transmission system. Compared to more complex power transmission systems, V-belts are relatively easy to install, requiring minimal specialized tools or expertise. This can result in lower installation costs.

  5. Maintenance Cost:
  6. V-belts generally require regular maintenance to ensure optimal performance and longevity. Maintenance activities such as belt tensioning, alignment checks, and periodic replacements contribute to the overall maintenance cost. However, compared to other power transmission systems, V-belts often have lower maintenance costs due to their simplicity.

  7. Energy Efficiency:
  8. V-belts offer good energy efficiency, as they typically have low friction losses during power transmission. This can result in lower energy consumption and reduced operating costs over time. Choosing high-quality V-belts with low slip and efficient power transfer characteristics can further enhance energy efficiency.

  9. Replacement and Downtime Costs:
  10. Over time, V-belts will wear out and require replacement. The frequency of belt replacements will depend on factors such as operating conditions, maintenance practices, and belt quality. Planned belt replacements can help minimize unexpected downtime and associated costs. However, unplanned belt failures can lead to costly downtime, lost production, and potential damage to other system components.

  11. Overall System Efficiency:
  12. The efficiency of the entire power transmission system should be considered when evaluating costs. While V-belts themselves are relatively efficient, the overall system efficiency can be influenced by factors such as pulley design, alignment, and load conditions. A well-designed and properly maintained V-belt drive system can optimize efficiency and reduce long-term operating costs.

By considering these cost considerations associated with using V-belts in power transmission, you can make informed decisions about the selection, installation, and maintenance of V-belt drive systems to achieve a balance between upfront costs and long-term operational efficiency.

v belt

What are the key differences between V-belts and other types of power transmission belts?

V-belts are a popular type of power transmission belts, but they differ from other types of belts in terms of design, construction, and specific applications. Here are the key differences:

1. Belt Profile:

V-belts have a trapezoidal or V-shaped cross-sectional profile, which gives them their name. This profile allows the belts to fit securely into V-shaped pulleys, providing effective power transmission and grip. Other types of belts, such as flat belts or timing belts, have different profiles suited for specific applications.

2. Power Transmission Method:

V-belts transmit power through frictional forces between the belt and the pulleys. As the belt wraps around the pulleys, the friction between the belt and the pulley surfaces allows the transfer of torque and power. In contrast, other belts, like timing belts or chain drives, use toothed profiles or interlocking mechanisms to transmit power, providing precise synchronization and higher torque transmission.

3. Load Capacity:

V-belts are designed to handle moderate to high loads, making them suitable for a wide range of applications. However, certain applications with heavier loads may require specialized heavy-duty V-belts or alternative belt types, such as synchronous belts or chain drives, which offer higher load-carrying capacities.

4. Speed Range:

V-belts are suitable for a broad speed range, but their limitations may vary depending on the specific design, material, and construction. Traditional V-belts may have speed limitations at extremely high speeds due to centrifugal forces and heat generation. High-speed V-belts or narrow V-belts are available for applications that require higher speeds. In contrast, timing belts and synchronous belts are designed for precise speed control and are commonly used in applications with strict speed requirements.

5. Tensioning and Maintenance:

V-belts require periodic tensioning to maintain proper grip and power transmission efficiency. Tensioning is typically achieved through manual adjustment or automatic tensioners. Other types of belts, such as timing belts or chain drives, often have fixed tensioning systems and require less frequent maintenance.

6. Noise and Vibration:

V-belts generally operate with lower noise and vibration levels compared to other types of belts, such as chain drives. The design and frictional nature of V-belts contribute to smoother operation and reduced noise generation, making them suitable for applications where noise and vibration control is important.

7. Applications:

V-belts are widely used in various applications, including industrial machinery, automotive systems, HVAC systems, and power transmission in general. They are versatile and can accommodate different power requirements. Other belt types, such as timing belts, are commonly used in precision positioning, robotics, or applications that require synchronous motion.

Overall, V-belts offer reliable and cost-effective power transmission for a wide range of applications. However, the selection of the appropriate belt type depends on factors such as load requirements, speed range, precision, noise considerations, and specific application needs.

v belt

What is a V-belt and how does it work?

A V-belt, also known as a Vee belt or a wedge belt, is a type of power transmission belt that is commonly used in various industrial applications. It is called a V-belt because of its trapezoidal cross-sectional shape, resembling the letter “V.”

The primary purpose of a V-belt is to transmit power between two rotating shafts. It does this by wrapping around the pulleys or sheaves on the shafts and creating frictional forces between the belt and the pulleys. The friction generated between the belt and the pulleys allows the belt to transfer torque from the driving pulley to the driven pulley.

The V-belt’s design provides several advantages for power transmission:

  1. High friction: The V-shaped cross-section of the belt increases the contact area with the pulleys, resulting in high frictional forces. This allows for effective power transmission even in applications with high torque or heavy loads.
  2. Belt wedging: When the V-belt is tensioned, it wedges itself deeper into the pulley grooves, enhancing the friction and preventing slippage between the belt and the pulleys. This feature is especially useful in applications where the driven pulley needs to rotate at a different speed than the driving pulley.
  3. Quiet operation: V-belts generally operate with less noise compared to other types of belts, such as flat belts. The V-shaped design helps to reduce vibrations and noise levels during power transmission.
  4. Simple installation: V-belts are relatively easy to install and replace. They can be quickly mounted on the pulleys without requiring extensive alignment procedures.

However, it’s important to note that V-belts have limitations as well. They are not suitable for applications that require precise speed control or when high-speed ratios are needed. In such cases, other power transmission methods like gear systems or synchronous belts may be more appropriate.

In summary, V-belts are commonly used power transmission belts that utilize frictional forces to transfer torque between rotating shafts. Their V-shaped design and high friction characteristics make them effective for various industrial applications.

China Good quality D3650 High Quality Agricultural Belt Wrapped V-Belt for Harvesting Machine   electric axleChina Good quality D3650 High Quality Agricultural Belt Wrapped V-Belt for Harvesting Machine   electric axle
editor by CX 2024-04-16